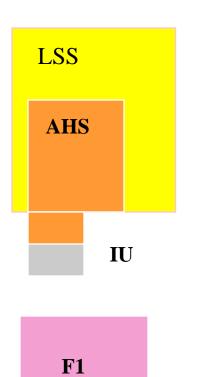
Atomic Bomb Studies at ABCC/RERF Overview

Kiyohiko Mabuchi Radiation Epidemiology Branch, NCI For Radiation Epidemiology Course May 4-14, 2004

Early Years

- A-bomb explosions in August 1945
 - Acute deaths (through December 1945)
 - Hiroshima: 90,000-120,000 of 330,000
 - Nagasaki: 60,000-80,000 of 250,000
- US Government established Atomic Bomb Casualty Commission (ABCC) to study <u>late</u> effects, 1947
 - A genetic study of 80,000 newborn infants, 1948-
 - Leukemia registry, late 1940s


Francis Committee, 1955

- Thomas Francis, Jr
- Seymour Jablon
- Felix E. Moore

- ..one of the mutagenic effects might ..increase congenital malformations, but little is known about possible somatic effects.
- ..emphasizes the critical importance of continuity. An important element.. is the establishment of fixed, welldefined groups of exposed and non-exposed person ("Unified study design")
 - Establishment of "cohort" populations and long-term follow-up mechanisms
 - Field study to collect information (location, shielding, acute effects) for exposure assessment

Cohorts

Cohort	Size
Life Span Study (LSS)	120,000
Adult Health Study (AHS)subset	22,000
In-utero exposure (IU)	3,300
Adult Health Study subset	1,100
F ₁ generation	80,000
Adult Health Study subset	1,100

LSS Cohort

- Survivors within 2.5 km of the bombings
 - Lived in Hiroshima and Nagasaki in 1950
 - Met certain conditions favorable for follow-up
 - Roughly half of all survivors <2.5 km
- Age/sex matched survivors within 2.5 -10 km
- Not-in-city (NIC)
 - Hiroshima/Nagasaki residents who were not in either city at the time of the bomb (ATB)

Follow-up Methods (1)

Mortality

- Since 1950
- Virtually complete ascertainment regardless of residence through family registration system (koseki) and death certification

Cancer incidence

- Since 1958
- Through Hiroshima and Nagasaki tumor registries

Follow-up (2)

- Pathology program
 - Autopsies in 1950s, 60s and 70s
 - Surgical pathology program
- Adult Health Study clinical follow-up
 - Subset of 22,000 persons in the contact area
 - Biennial health examination since 1957
 - Continued high participation, 70%
- LSS mail surveys
 - Roughly every 10 years since 1970
 - Lifestyle and risk factors

Strengths and Limitations of LSS

Strengths

- Large naturally-living population exposed at a wide rage of ages
- Continuous follow-up of > 50 years
- Comprehensive coverage of endpoints
- Well-defined individual dose estimates

Limitations

- Can address only single exposure
- Missing first 5 years

Principal Findings To Date

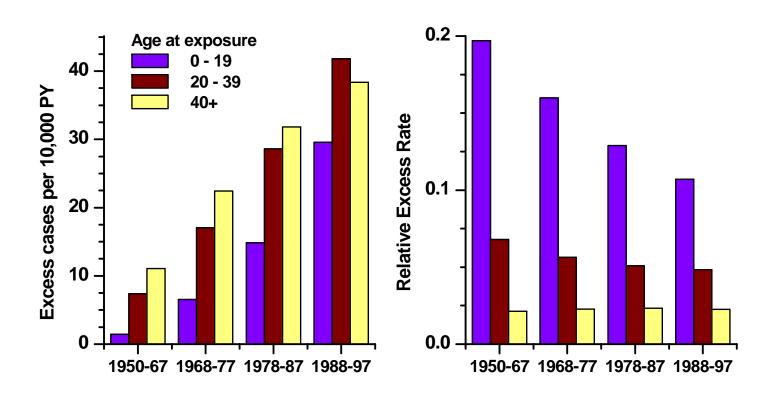
- Early excess of leukemia risk with a peak 5-10 years after exposure
- Gradual increase in solid cancer risk persisting for many decades – possibly throughout life
- Emerging evidence of excess non-cancer disease risk – notably of cardiovascular disease
- Age/time dependence of leukemia and cancer risks and dose response data – important for risk estimation

Solid Cancers

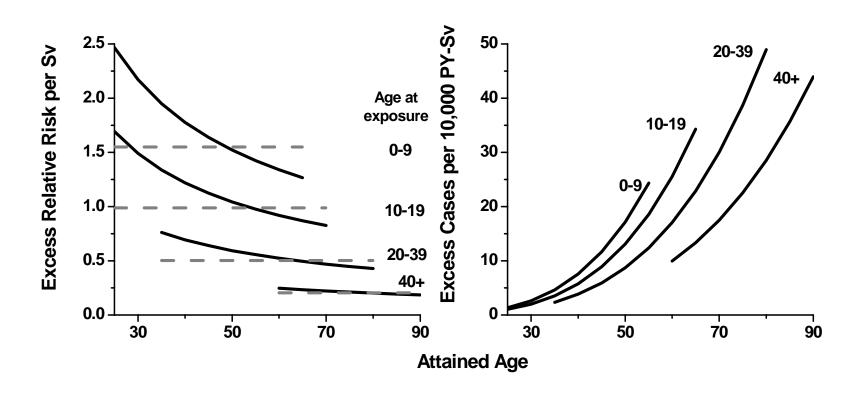
LSS Cohort by Dose

Colon dose (Sv)	Persons	Percent
< 0.005	35,483	30%
0.005-	26,299	22%
0.05-	6,377	5%
0.1-	5,738	5%
0.2-	6,253	5%
0.5-	3,196	3%
1.0-	1,607	1%
2.0+	679	0.5%
Unknown	7,109	6%
Total survivors	93,741	78%
Not in city	26,580	22%
LSS total	120,321	100%

Although the dose response is largely driven by data at >1 Sv, substantial information can also be obtained on low dose risk.

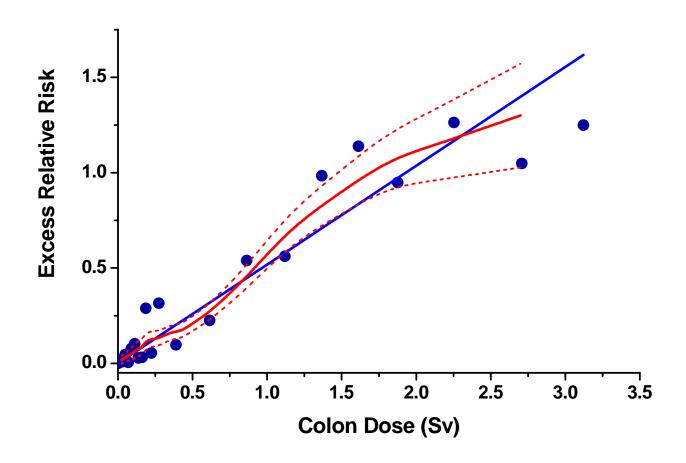

LSS Solid Cancer Mortality 1950-1997

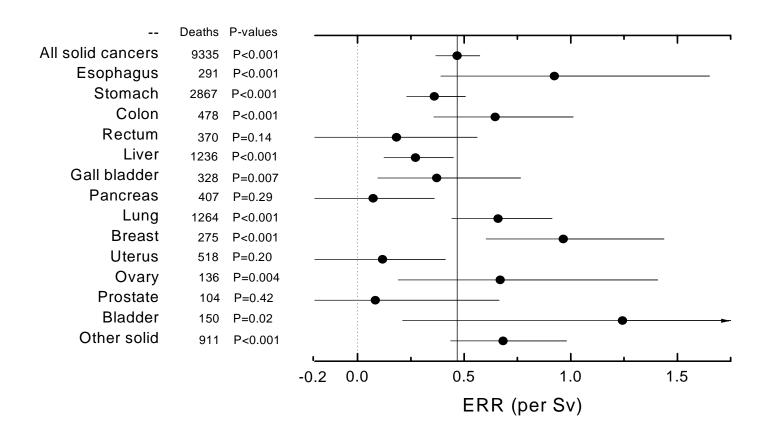
Dose, Sv	Subjects	Observed	Expected	Excess
< 0.005	37,458	3,833	3,844	0
0.005 -	31,650	3,277	3,221	44
0.1 -	5,732	668	622	39
0.2 -	6,332	763	678	97
0.5 -	3,299	438	335	109
1 -	1,613	274	157	103
> 2	488	82	38	48
Total	86572	9,335	8,895	440


Solid Cancer Temporal Patterns

Age at	195	0 - 67	196	8 - 77	1978	3 - 87	1988	3 - 97
exposure	Obs	Excess No	Obs	Excess No	Obs	Excess No	Obs	Excess No
		(Rate)		(Rate)		(Rate)		(Rate)
<20		9 (1.5)	189	22 (6.5)	434	49 (14.9)	954	93 (30.0)
20 -	457	28 (7.4)	632	35 (17.0)	1,055	51 (28.6)	1,219	57 (41.8)
>40	2,055	42 (11.1)	1,192	27 (22.5)	769	19 (31.8)	334	6 (38.4)
Total	2,557	79	2,013	84	2,258	119	2,507	156

Solid Cancer: Absolute and Relative Excess Rates


Solid Cancer: ERR and EAR by Age


Age at Exposure and Vital Status

Age at exposure	People in 1950	Alive in 1998
0 - 9	17,824	16,243 (91%)
10 - 19	17,558	14,030 (80%)
20 - 29	10,883	7,158 (66%)
30 - 39	12,266	3,810 (31%)
40 - 49	13,491	549 (4%)
> 50	14,550	11 (0%)
Total	86,572	41,801 (48%)

Solid Cancer Dose Response

Site-specific ERRs

Leukemia


Leukemia mortality 1950 - 1990

Dose (Sv)	Subjects	Obs.	Exp.	Excess
< 0.005	35,458	73	65	8
0.005 -	32,915	59	63	-4
0.1 -	5,613	11	12	-1
0.2 -	6,342	27	13	14
0.5 -	3,425	23	7	16
1 -	1,914	26	4	22
> 2	905	30	2	28
Total	86,572	249	166	83

Leukemia Temporal Patterns

Age at	1950 - 75		je at 1950 - 75 1976 - 85		1986 - 90	
exposure	Obs.	Excess	Obs.	Excess	Obs.	Excess
0 - 9	29	20	3	-3	3	-2
10 - 19	29	18	7	-2	7	1
20 - 29	21	12	8	1	3	-1
30 - 39	21	6	22	12	7	2
40 - 49	37	15	15	4	7	3
50+	23	-1	6	2	1	0
Total	160	70	61	14	28	3

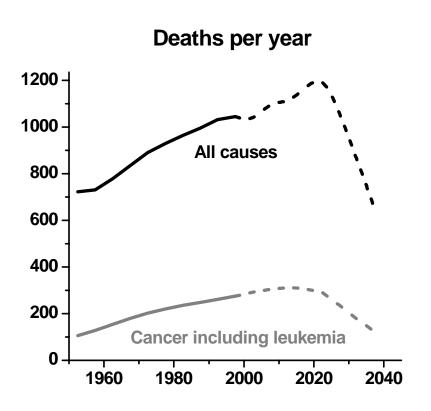
Leukemia Excess Absolute Risk

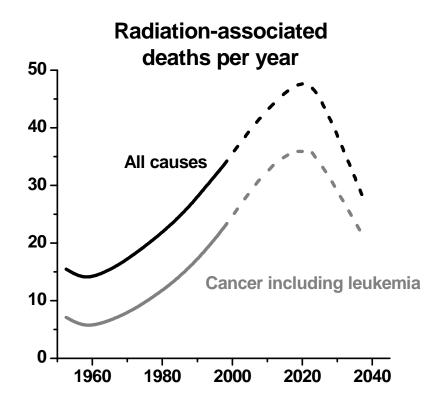
Leukemia Dose Response

Non-cancer Diseases

Non-cancer Mortality 1950-97

Dose, Sv	Obs	Expected	Excess
<0.005	13,832	13,954	0
0.005-0.1	11,633	11,442	17
0.1-0.2	2,163	2,235	17
0.2-0.5	2,423	2,347	47
0.5-1	1,161	1,075	61
1-2	506	467	68
2+	163	111	40
Total	31,881	31,631	250


Magnitude of Risk


	1950	-1997	1991-1997	
	Deaths	Excess	Deaths	Excess
	9,335	440	1,756	114
ncer	31,881	250	4,760	66

Cancer

Non-cancer

Future

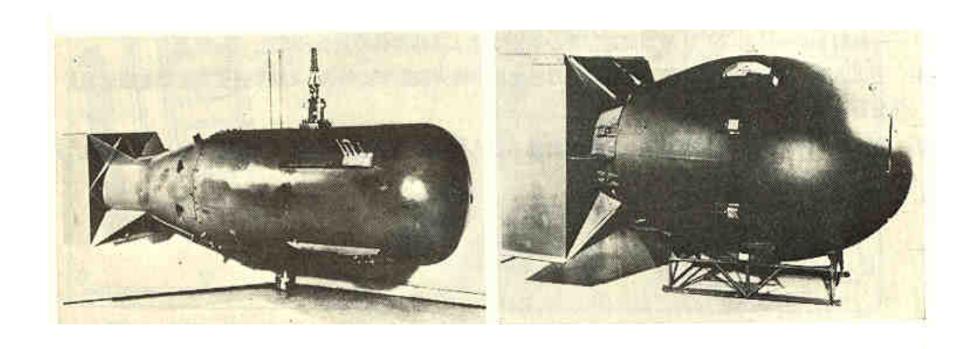
In-utero Cohort

- Cohort of 3,300 persons
- Exposure throughout all gestational period
- DS86 maternal uterine dose
 - -800 persons >0.01 Sv
- Mostly followed since birth
- 96% alive

In-utero Findings

- Severe mental retardation, brain damage
- Absence of childhood leukemia
- Increased solid cancer risk
 - Cancer mortality risk: in-utero vs early childhood exposure (Delongchamp et al, 1997)

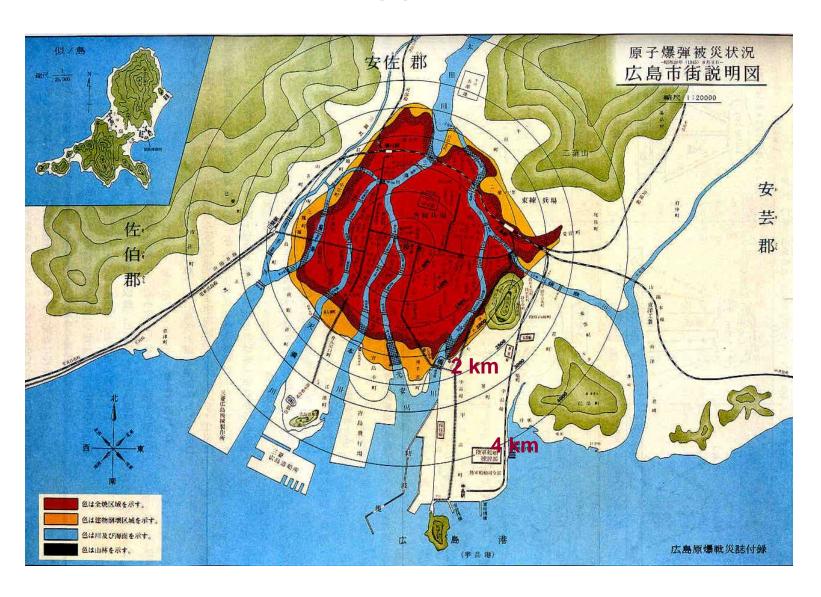
Cancer Mortality Ages 17-46


	PY/10 ⁴	Leuk	emia	Solid o	ancer
		Cases	Rate	Cases	Rate
Exposed; in-utero	4.1	2	0.5	8	2.0
Exposed: childhood	23.0	24	1.0	56	2.4
Controls	39.5	4	0.1	57	1.4

Solid Cancers Ages 17 - 46

Exposed	Deaths	ERR/Sv
In utero	8	2.4 (0.3, 6.7)
Ages 0-5	56	1.4 (0.4, 3.1)

A-Bomb Dosimetry


Bombs

Hiroshima
²³⁵U bomb, TNT 12.5 kt
"Little Boy"

Nagasaki ²³⁹Pu bomb, TNT 22kt "Fat Man"

HIROSHIMA

Dosimetry System 86 (DS86)

Provides individual dose estimates (gamma and neutron doses for 15 organs) based on:

- Survivor's location ATB
- Shielding situation ATB
- Models
 - For radiation released, transportation through air, passage through physical structure and human tissue
 - Validated by measurements of exposed materials

FIGURE 1.5 Photograph made in 1958 during a weapons test at the Nevada Test Site. The Japanese house replicas are in the foreground, and the collimators used to measure the angular distributions of the neutrons and gamma-ray fields are in the background.

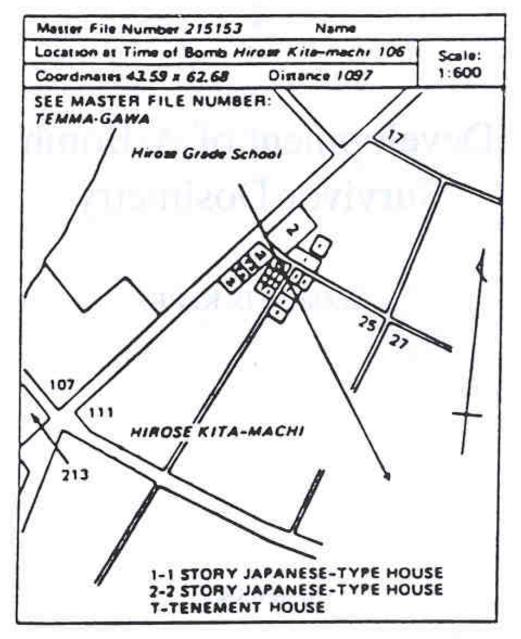


FIGURE 1.1(a) Example of a shielding history for a survivor exposed inside a one-story Japanese-type house in Hiroshima.

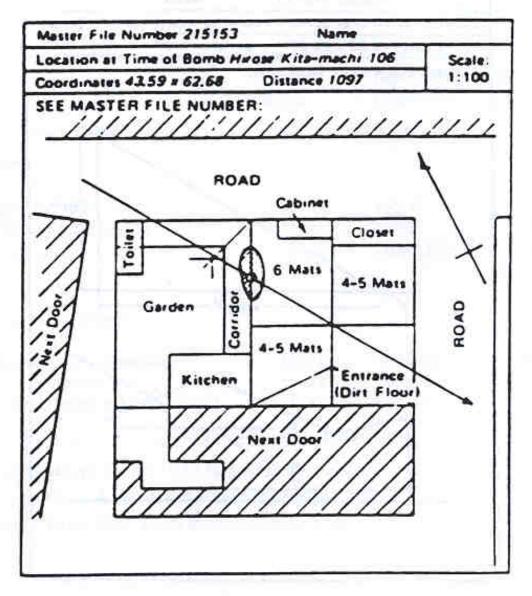
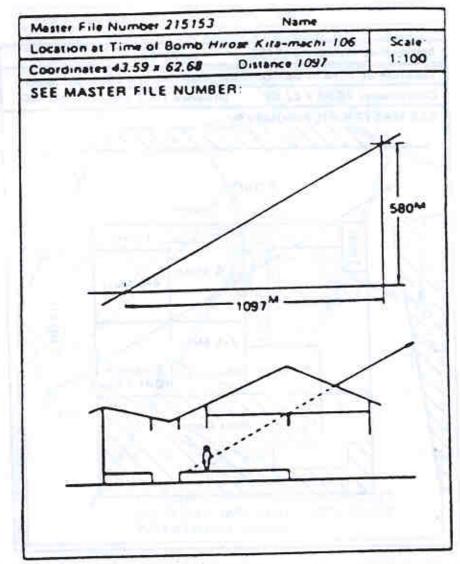



FIGURE 1.1(b) Example of a shielding history for a survivor exposed inside a one-story Japanese-type house in Hiroshima.

FIGURE 1.1(c) Example of a shielding history for a survivor exposed inside a one-story Japanese-type house in Hiroshima.

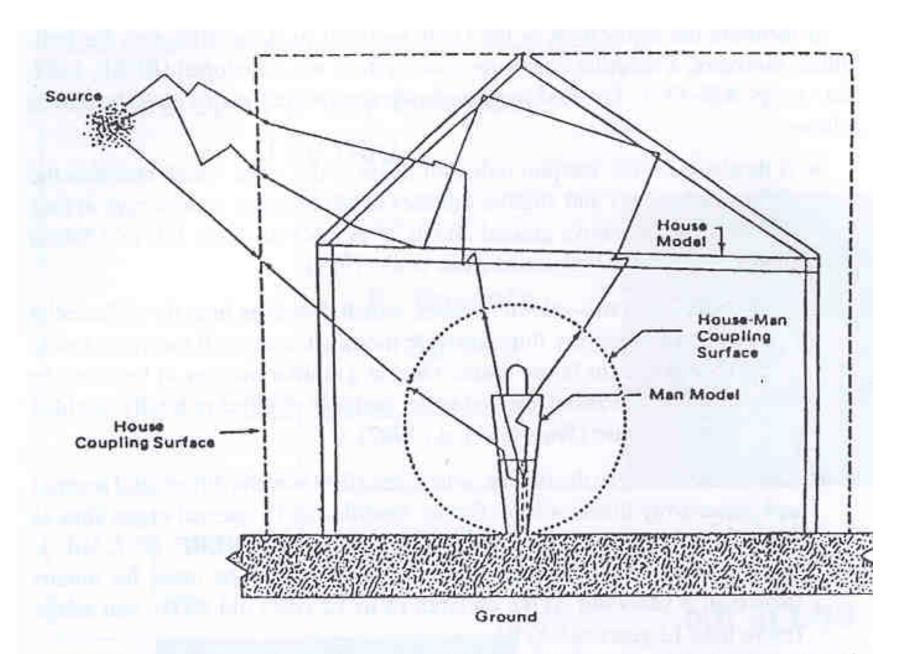
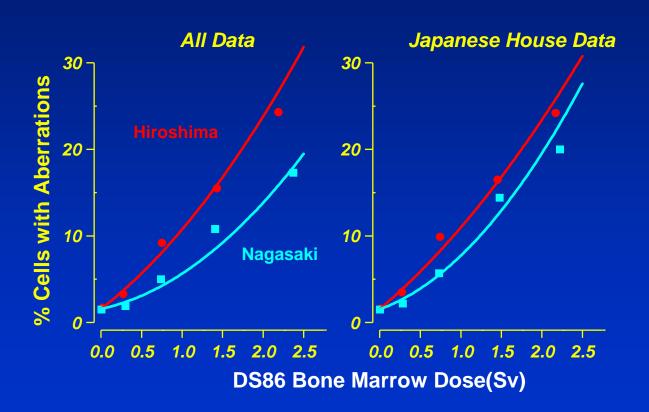



FIGURE 1.8 Illustration of the overall DS86 coupling procedure for dose estimation for individual A-bomb survivors with shielding histories.

Chromosome aberration vs DS86

DS02 Preliminaries

- DS02 is replacing DS86
- Small changes in dose estimates
 - Gamma doses increased slightly
 - Neutron doses decreased at ranges of interest
- Slight decreases in cancer risk estimates
 - ~7% decrease for solid cancer
 - ~15% decrease for leukemia
- Virtually no impact on shape, gender or agetime patterns